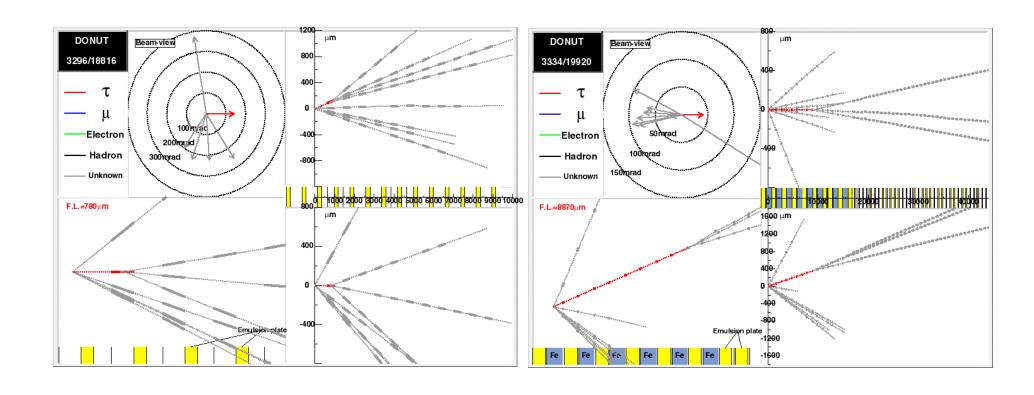


Analysis of Trident Events

Emily Maher

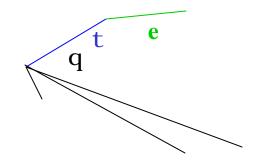
DONUT Collaboration Meeting

November 13, 2002


Outline

- Parameters
- Bayesian Probability
 - Prior Probability
 - Probability Density
- Results for Tridents
- A Note on Single Prong Events
- Conclusions
- Future Extensions

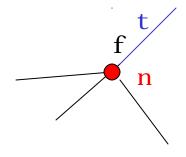
New n_t Trident Candidates



Production Angle q

• Angle between the original neutrino direction and the candidate t track

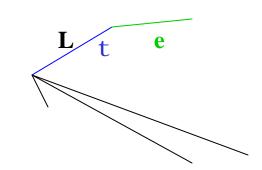
Event	\boldsymbol{q}	
3334_19920	39.8 mrad	
3296_18816	141 mrad	



Phi Asymmetry Δf

- \boldsymbol{f} Asymmetry
 - Measure \boldsymbol{f} for all tracks
 - Average the $m{f}$ angles for all non-tau tracks
 - Subtract $m{f}$ angle of $m{t}$ track from average $m{f}$

Event	Δf
3334_19920	3.11 rad
3296_18816	1.74 rad



Decay Length L

• Decay length of the candidate t track

Event	L		
3334_19920	8.87 mm		
3296_18816	0.78 mm		

Bayesian Probability

$$P(i) = \frac{PP_i\Pi(i \mid j)}{PP_i\Pi(i \mid j) + \sum_{bkg} PP_{bkg}\Pi(bkg \mid j)}$$

P(i) is the probability event is an i type event, where i is a tau, charm, or interaction

 PP_i is the prior probability

apriori knowledge of the likelihood of event type

 $\Pi(i \mid j)$ is the probability density function

measure of simulated events which reside in a region of parameter space centered around the parameters of the event

Prior Probability of n_t

$$PP_{n_t \to 3} = \frac{N_{n_t} P(t \to 3 prong)}{N_{events}}$$

 N_{n_t} is the number of n_t events expected in the data

 $P(t \rightarrow 3 prong)$ is the probability that a tau will decay to 3 charged particles

 N_{events} is the total number of events (429)

Prior Probability of Charm

$$PP_{charm \to 3} = \sum_{i} \frac{N_{charm_i} P(charm_i \to 3prong) \mathbf{x}}{N_{events}}$$

 N_{charm_i} is the number of charm particles expected of type i which is either D, D_s , or Λ_c

 $P(charm_i \rightarrow 3prong)$ is the probability that the charm particle will decay to 3 charged particles

X is the probability that the primary lepton is not identified

Prior Probability of Interaction

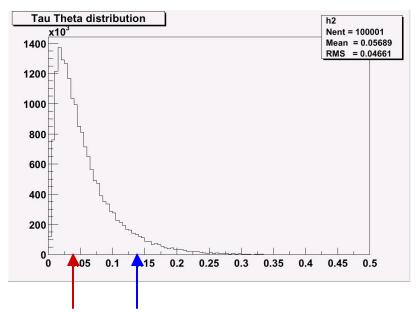
$$PP_{scatter} = \frac{\sum_{i} L_{i} P (\text{int})_{i} \mathbf{X}}{N_{events}}$$

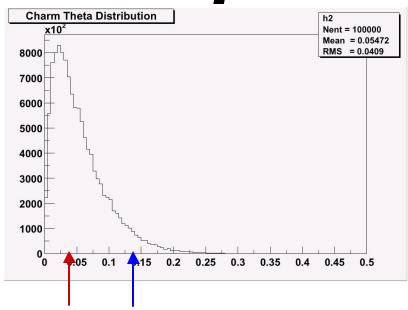
 L_i is the total length of all the hadron tracks through material i -iron, emulsion, or plastic

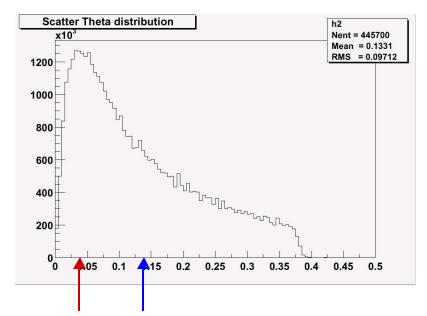
 $P(\text{int})_i$ is the probability that the hadrons will interact to produce 3 charged particles in material i

Results of Prior Probability

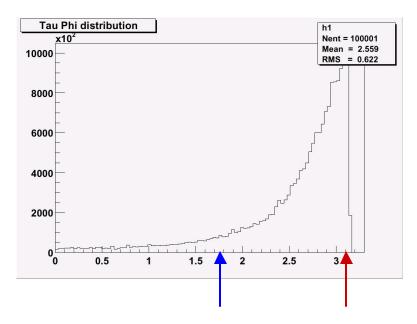
Type of Event	Prior Probability
Tau Neutrino	5.92×10^{-3}
Charm Decay	2.05×10^{-3}
Hadronic Interaction	5.48×10^{-3}

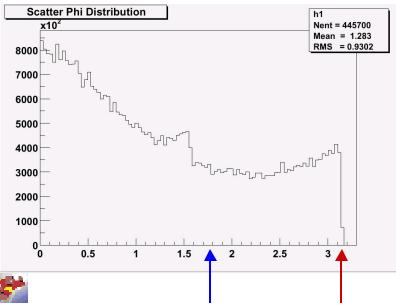

Probability Density

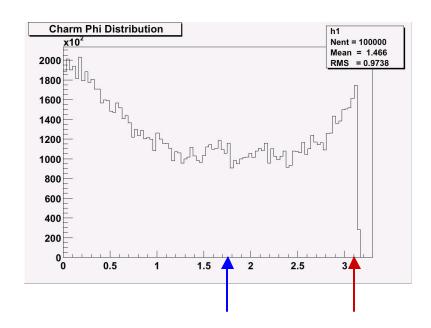

- Calculated using simulated data for each type of event using Jason's simulated data
- Measured by calculating fraction of simulated events which reside in a region of parameter space
- Region of parameter space is centered on the Δf , \boldsymbol{q} , and L of each event



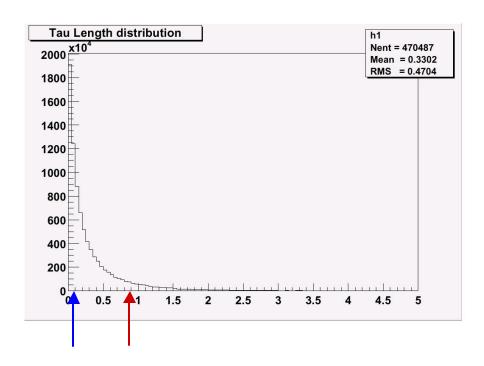
Distributions for **q**

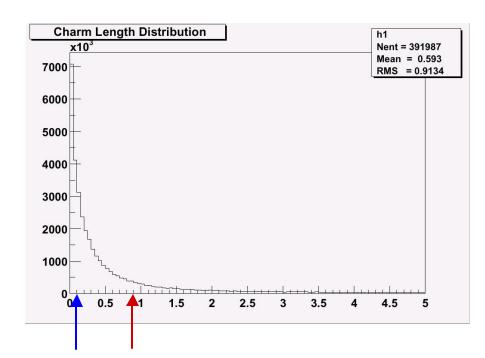

3334_19920


3296_18816



Distributions for Δf





3334_19920 3296_18816

Distributions for L

3334_19920 3296_18816

Results for Probability Density (in 1/rad²mm)

Type of Event	3334_19920	3296_18816
Tau Neutrino	1 .6253	0.545
Charm Event	0.565	0.020
Interaction Event	0.042	0.052

Results for Tridents

Type of Event	3334_19920	3296_18816
Tau neutrino	0.88	0.91
Charm Event	0.10	0.01
Interaction	0.02	0.08

Single Prong Events

Event	New		New	Old	New	Old
	t	t	Charm	Charm	Scatter	Scatter
3024_19920	0.870	0.698	0.130	0.302	0.00	0.00
3039_01910	0.996	0.982	0.002	0.018	0.002	2.6×10^{-4}
3263_25102	0.060	0.130	0.030	0.140	0.910	0.730
3333_17665	0.994	0.985	0.002	0.015	0.004	0.00

Note the new analysis only uses 3 parameters while Jason's analysis (the old analysis) uses 5 parameters.

Conclusions

- 3334_19920 and 3296_18816 are both most likely to be tau neutrino trident events according to this analysis
- This analysis produced similar results to Jason's analysis

Future Extensions

- Calculating efficiencies for locating trident events
- Use current data set to calculate more accurate values for number of expected n_t interactions, number of expected charm background decays, and total lengths of hadron tracks in different materials
- Add parameters to this analysis which relate to decay products

